

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

1st SEMESTER EXAMINATIONS

2018 / 2019 ACADEMIC SESSION

COURSE CODE: MTH 325

COURSE TITLE: Mathematical Method II

DURATION: 2 Hours

A

HOD's SIGNATURE

INSTRUCTION:

 YOU ARE TO ANSWER FOUR QUESTIONS FROM THE SIX QUESTIONS ON THE EXAMINATION PAPER.

Question One

- 1a) Explain the following terms
- (i) Transversality conditions
- (ii) Geodesic problem
- (iii) Variation principle
- (iv) Variation problem
- 1b) State fermat principle of optics
- 1c) Find the curve which minimize $\int_a^b (y^2 + y^{1^2}) dx$

- 1 Mark
- 1 Mark
- 1 Mark
- 1 Mark
- 2 Marks
- 9 Marks

Question Two

2a)i Find the $L^{-1}\left(\frac{5s+8}{s^2+4}\right)$

3 Marks

(ii) Find the Laplace transform $f(t) = \ell^{2t} + 4t^3 - 2\sin 3t$

3 Marks

(iii) Find the $L^{-1}\left(\frac{3}{s-5}\right)$

2 Marks

Solve the differential equation y''+5y'+6y=0 y(0)=2, y'(0)=3 Using Laplace transform. 7 Marks

Question Three

- Determine the extrema of the functional $I[y(x)] = \int_a^b f(x,y,y^1) dx$ subjected to the condition that the point $A(x_0,y_0)$ moves on $x^2 + y^2 = 1$ and the other end $B(x_1,y_1)$ lies on a straight line x + y = 4
- 3b) Find the Laplace transform of sin at and cos at

5 Marks

Question Four

4a) State the Hamilton principle and write the Lagrange equation

2 Marks

- b) A particle of mass 3kg moves on x y plane. The potential energy of the particle as a function is given by $V = 36xy 48x^2$. The particle starts at time t=0 at the point with the position vector (10, 10).
- (i) Write the differential equations describing the motion

3 Marks

(ii) Solve the equation to determine position of the particle as a function of time

3 Marks

(iii) Find the velocity and acceleration as a function of time

3 Marks

4c) State and prove the convolution theorem. Using the convolution theorem evaluate

$$H(s) = \frac{1}{(s+2)^2 + (s^2 + 1)}$$

4 Marks